勤慎论道 第一百零一讲 黄国维教授谈“Fueling Future”
报告题目:Fueling Future
报告人:黄国维 教授
报告人单位:沙特国王科技大学
时 间:2023年4月21日 上午10:00-11:00
地 点:仓前校区 勤园17-208
邀请人:杨丽敏 副教授
报告人简介:
黄国维教授,1997年,本科毕业于台湾大学;2004年,博士毕业于斯坦福大学;2004-2007年,布鲁克海文国家实验室担任研究员;2007-2009年,新加坡国立大学,助理教授;2009年至今,沙特国王科技大学,助理教授、副教授、教授。化学学科主任、副校长。荣誉:沙特基础工业公司(SABIC)客座教授(2013-2016年);中国青年化学家国际学术研讨会新星奖(2016年);北京大学未名创新讲师(2018年);美国化学金属有机化学领域先驱和具有影响力的学者(2020年)。主要研究领域为:1.氢气的生产和储存;2.PN3P-鳌合型配体在催化反应中的金属-配体协同性和芳香性;3.小分子活化和功能化(包括CO2利用和N2还原固氮);4.有机金属和有机催化反应的DFT计算建模和动力学研究。
报告内容简介:
The estimated world population of 8.0 billion people consumed ~15.2 Gtoe of energy (at an average rate of 20.1 TW). Globally, the burning of carbon-based fossil fuels supplies over 80% of the energy demand, and hence the prospering industrial societies are responsible for the observed increase in carbon dioxide levels from preindustrial 280 ppm to over 420 ppm measured last year. The constantly increasing atmospheric CO2 concentration is highly likely to result in global warming, sea level rise, and ocean acidification. To reduce the environmental footprint of modern societies and address the limitations of fossil recourses, the projected increase in global energy demand must go along with the implementation of low-carbon energy production and carrier systems. In this presentation, the current energy status and future options will be discussed and compared. It will then be concluded by introducing our research efforts in utilizing formic acid as a NET-ZERO hydrogen/energy carrier and e-fuel.
参考文献:
[1] Eppinger, J.; Huang, K.-W. “Formic Acid as a Hydrogen Energy Carrier” ACS Energy Lett. 2017, 2, 188-195.
[2] Chatterjee, S.; Dutta, I.; Lum, Y.; Lai, Z.; Huang, K.-W. “Enabling Storage and Utilization of Low-Carbon Electricity: Power to Formic Acid” Energy Environ. Sci. 2021, 14, 1194-1246.
[3] Chatterjee, S.; Huang, K.-W. “Unrealistic Energy and Materials Requirement for Direct Air Capture in Deep Mitigation Pathways” Nat. Comm. 2020, 3287.
[4] Parsapur, R. K.; Chatterjee, S.; Huang, K.-W. “The Insignificant Role of Dry Reforming of Methane in CO2 Emission Relief” ACS Energy Lett. 2020, 5, 2881-2885.
[5] Chatterjee, S.; Parsapur, R. K.; Huang, K.-W. “Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector” ACS Energy Lett. 2021, 6, 4390-4394.
[6] Dutta, I; Chatterjee, S.; Cheng, H.; Parsapur, R. K.; Liu, Z.; Li, Z.; Ye, E.; Low, J.; Lai, Z.; Kawanami, H.; Loh,X. J.; Huang, K.-W. “Formic Acid to Power towards Low-Carbon Economy” Adv. Energy Mater. 2022, 2103799
[7] IEA World Energy Outlook 2015-2021.
[8] House, K. Z.; Harvey, C. F.; Aziz, M. J.; Schrag, D. P. “The Energy Penalty of Post-combustion CO2 Capture & Storage and Its Implications for Retrofitting the U.S. Installed Base” Energy Environ. Sci. 2009, 2, 193–205.
[9] Dowell, N. M.; Fennell, P. S.; Shah, N.; Maitland, G. C. “The Role of CO2 Capture and Utilization in Mitigating Climate Change” Nat. Clim. Chang. 2017, 7, 243–249.