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ABSTRACT: A chiral N-heterocyclic carbene (NHC)-catalyzed [4 + 2] annulation of γ-chloroenals and α-arylidene
pyrazolinones was developed in the absence of expensive oxidants. The reaction proceeds smoothly via a vinyl enolate
intermediate to afford spirocyclohexane pyrazolones in moderate to good yield (up to 86%) with high diastereoselectivities (up
to 15:1 dr) and excellent enantioselectivities (up to >99% ee).

With special electronic properties,1 N-heterocyclic car-
benes (NHCs) were commonly described as unique

ligands in organometallic catalysis.2 Since the discovery of the
isolation and crystallography of stable NHCs by Arduengo
during the early 1990s,3 multiple applications have been found
in catalytic transformations, including not only organometallic
catalysis but also organocatalysis.4 Early documents concerning
NHC organocatalytic transformations were focused on the
entrance to acyl anion intermediates by umpolung of
aldehydes.5 In addition to this, more recent research develop-
ments have been made on the reactivity of enolate equivalents
(activation of α-carbon),6 homoenolate equivalents (activation
of β-carbon),7 and vinyl enolate equivalents (activation of γ-
carbon).8 It is worth mentioning that γ-carbon activation by
NHC organocatalysis has inaugurated new access to target
molecules via in-situ-generated vinyl enolate species. The
construction of heterospirocyclic compounds was realized via
an NHC organocatalytic strategy.9

The structure of pyrazol-3-one represents a simple and
essential building block in a large family of clinical and listed
medicines.10 In particular, chiral spirocyclohexane pyrazolones
(SCHPs) derived from pyrazol-3-ones are fundamental
skeletons encountered throughout natural products and
pharmaceuticals due to their broad biopharmaceutical activ-
ities.11 As presented in Scheme 1, medicinal bioactivities have
been found in SCHP skeletal compounds, such as p38 inhibitor
(I), antitumor agent (II), antiinflammatory (III), type-4
phosphodiesterase inhibitor (IV), and acetyl-CoA carboxylase
inhibitor (V).12 Thus the construction of the chiral spiropyr-
azolone skeleton has been of great importance and has triggered
vast investigation of their synthesis. Although the organo-
catalyzed reactions, such as the [1 + 2 + 2] or [1 + 4]
cycloaddition reaction,13 [1 + 5] annulation,14 [2 + 4]
annulation,15 and [3 + 3] annulation,16 have been described

using attractively synthetic strategies, it is valuable to explore
novel methods to construct this core structure efficiently.
Our group has revealed the constructions of spirocyclic

oxindoles via in-situ-generated vinyl enolate species in an NHC-
organocatalyzed hetero-Diels−Alder reaction with isatins.17 We
continue investigating the application of the NHC-organo-
catalyzed transformation in the synthesis of spirocyclohexane
pyrazolone skeletons (SCHPs) from the diversity of in-situ-
generated vinyl enolate species (Scheme 2).18 Biju’s group has
reported an asymmetric synthesis of spiropyrazolones via the
formal [3 + 3] annulation of enals and α-arylidene pyrazolinones
catalyzed by NHC.19 Herein we report a different [4 + 2]
annulation of γ-chloroenals and α-arylidene pyrazolinones via
vinyl enolate intermediates for the enantioselective construction
of carbocyclic spiropyrazolone derivatives catalyzed by NHC.
In the initial investigation, the reaction was carried out

between γ-chloroenal 1a and 4-benzylidene-pyrazol-3-one 2a by
employing N-substituted triazolium salt as a precatalyst (Table
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Scheme 1. Selected Bioactive Molecules Containing
Spiropyrazolone Core Structures
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1). Different chiral triazolium salt precatalysts were screened.
The reaction could proceed smoothly (61% yield, >99% ee)
when catalyzed by N-mesityl-substituted triazolium (catalyst A)
employing triethylamine as the base in tetrahydrofuran (THF),
albeit with low diastereoselectivity (2:1 dr) (entry 1). Catalyst B
with a penta-fluorophenyl group gave an even worse result (26%
yield). When the catalyst was derived from an electron-
withdrawing group on the indanol ring (catalyst C), it exhibited
more efficient diastereoselectivity (10:1 dr) but was invalid on
the control of stereoselectivity (70% ee). With mesityl-
substituted triazolium salt A as the most suitable catalyst, the
screening of solvents indicated that the best solvent was DCE
(1,2-dichloroethane), leading to spirocyclohexane pyrazolone
3a in high yield and with good diastereoselectivity compared
with other solvents, such as toluene and DCM (dichloro-
methane). An inorganic base was screened to be suitable for the

reaction with excellent enantiopurity (>99% ee) and good
diastereoselectivity (10:1 dr) and in high yield (79% yield).
After establishing the optimal reaction conditions, we

investigated the substrate scope of the formal [4 + 2] annulation
catalyzed by NHC (Tables 2 and 3). As shown in Table 2, a
broad spectrum of pyrazolinones were explored and produced
spirocyclohexane pyrazolone products in good yield and with
excellent enantioselectivities. First, a wide range of 5-methyl-2-
phenyl-pyrazolinones was tested under optimal conditions (R1,
3a−o). In most cases, the reactants bearing aromatic R1 were
well-tolerated to offer spiropyrazolones with excellent enantio-
selectivities (>99% ee), except for aliphatic-substituted pyr-
azolinone (3n, cyclohexyl, 90% ee). 4-Chloro-3-phenylbut-2-
enal 1a reacted flatly with 4-benzylidene-pyrazolinones carrying
either electron-withdrawing (3b−d, 3h−k) or electron-
donating (3e−g) substituents on the phenyl ring. As for the
substituent position on the phenyl ring, it showed that it has a
very slight impact on the reaction results (3c,j,k). Second, we
modified substituents (R2) on 2-phenyl ring of 4-benzylidene-5-
methyl-2-phenyl-pyrazolinones. Spirocyclohexane pyrazolones
were produced in good yield and with high enantiopurities in all
of the cases. As for the substituents R3 on the five-position of
pyrazolinones, both the aromatic group and the aliphatic group
were tolerated in the [4 + 2] cycloaddition reaction, in which the

Scheme 2. Construction of Spiropyrazolones

Table 1. Optimization of Reaction Conditionsa

entry solvent cat. base yield (%)b drc ee (%)d

1 THF A TEA 61 2:1 99
2 THF B TEA 26 2:1 99
3 THF C TEA 42 10:1 70
4 toluene A TEA 40 4:1 90
5 DCM A TEA 67 6:1 94
6 DCE A TEA 67 7:1 96
7 DCE A NaOAc 67 10:1 95
8e DCE A NaOAc 79 10:1 95
9e,f DCE A NaOAc 79 10:1 99

aUnless otherwise specified, the reaction was performed on a 0.10
mmol scale in the solvent (1.5 mL) at room temperature. bYields of
isolated products. cdr values determined by 1H NMR. dee values
determined by HPLC analysis on Chiralcel AD-H and OD-H
columns (see the SI). e50 mg 4 Å molecular sieve was added. f3.0
equiv NaOAc was used.

Table 2. Substrates Scope of Pyrazolinonesa

entry R1, R2, R3 yield (%)b drc ee (%)d

1 Ph, H, Me (3a) 79 10:1 >99
2e Ph, H, Me (3a) 76 10:1 >99
3 4-F-Ph, H, Me (3b) 66 12:1 >99
4 4-Cl-Ph, H, Me (3c) 69 13:1 >99
5 4-Br-Ph, H, Me (3d) 76 10:1 >99
6 4-Me-Ph, H, Me (3e) 81 9:1 >99
7 4-MeO-Ph, H, Me (3f) 80 10:1 >99
8 4-i-Pr-Ph, H, Me (3g) 77 9:1 >99
9 4-CF3−Ph, H, Me (3h) 67 12:1 >99
10 4-NO2−Ph, H, Me (3i) 60 15:1 >99
11 3-Cl-Ph, H, Me (3j) 65 14:1 >99
12 2-Cl-Ph, H, Me (3k) 40 10:1 >99
13 thiophen-2-yl, H, Me (3l) 75 7:1 >99
14 naphthalen-2-yl, H, Me (3m) 76 10:1 >99
15 cyclohexyl, H, Me (3n) 86 13:1 90
16 4-Ph-Ph, H, Me (3o) 75 10:1 >99
17 Ph, F, Me (3p) 64 9:1 >99
18 Ph, Cl, Me (3q) 62 10:1 >99
19 Ph, Br, Me (3r) 65 12:1 >99
20 Ph, Me, Me (3s) 70 8:1 >99
21 Ph, MeO, Me (3t) 68 9:1 >99
22 Ph, i-Pr, Me (3u) 69 9:1 >99
23 Ph, CF3, Me (3v) 60 13:1 >99
24 Ph, H, Et (3w) 61 8:1 >99
25 Ph, H, i-Pr (3x) 45 7:1 >99
26 Ph, H, Bn (3y) 69 8:1 >99

aUnless otherwise specified, reactions were performed on 1a (0.10
mmol), 2 (0.10 mmol). bYields of isolated products. cdr values
determined by 1H NMR. dee values determined via HPLC analysis.
eReaction was performed on a 1 mmol scale.
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spiropyrazolone products were afforded in moderate to good
yield and with excellent enantioselectivities (>99% ee) (3a, 3w−
y).
Next, we varied the γ-chloroenal substrate of the reaction

(Table 3). The desired products of spirocyclohexane
pyrazolones were obtained in satisfactory yield and with
excellent enantioselectivities in all of the cases. The electron-
donating substituents as well as the electron-withdrawing ones
were well tolerated on the β-phenyl ring. The ortho-, para-, and
meta-chlorophenyl γ-chloroenals were investigated in the
reaction and gave comparable results. It seemed that the
substituent position on the β-phenyl ring had a limited impact
on the reaction outcome. The scope of naphthalen-2-yl- and
thiophen-3-yl substituted γ-chloroenals (4i−j) afforded spi-
rocyclohexane pyrazolones in high yield, however, with
relatively lower enantioselectivities.
The absolute configuration of spirocyclohexane pyrazolone

3a was confirmed based on the X-ray crystallographic analysis
(Figure 1, CCDC 1948486). The prepared (5aR,10bS)-(+)-cis-
N-mesityl-substituted triazolium salt A provided exclusively
(5S,10R)-4-methyl-2,8,10-triphenyl-2,3-diazaspiro[4.5]deca-
3,7-diene-1,6-dione 3a.
We proposed the mechanism for this formal [4 + 2]

annulation of enals and α-arylidene pyrazolinones (Scheme
3). First, Breslow intermediate I was offered via the nucleophilic
addition of NHC catalyst to γ-chloroenal 1a and a 1,2-H

migration to oxygen from carbon. Subsequently, enolene II was
afforded via a tautomerization along with a C−Cl bond cleavage.
Then, enone intermediate III was produced via an enolene−
enone rearrangement along with a 1,5-H shift. After that, vinyl
enolate IV was generated by the base capture of the acidic γ-
proton. Finally, the reaction was finished by the cycloaddition of
vinyl enolate IV with pyrazolone derivate 2a, generating the
enantioenriched spiropyrazolones 3a and releasing NHC
catalyst.
Given that the spirocyclohexane pyrazolone skeletons are

important building blocks and moieties in pharmaceuticals, we
tried to demonstrate the synthetic utility of this formal [4 + 2]
annulation by transforming the products to other useful
molecules by simple protocols. The phosphoric ester 5a was
obtained with no loss of enantiopurity (87% yield, >99% ee) by
the treatment of optically enriched spiropyrazolone 3a with
hypochlorous (diphenyl phosphoric) anhydride at −78 °C in
THF (Scheme 4).

In summary, we have developed a chiral NHC-catalyzed [4 +
2] cycloaddition between γ-chloroenals with pyrazolinones in
the absence of expensive oxidants. The desired spirocyclohexane
pyrazolone products were obtained in moderate to good yield,
with high diastereoselectivities and excellent enantioselectivities.
This methodology accommodates the great prospects of
constructing biologically relevant spirocyclohexane pyrazolone
skeletons. Further investigations are undergoing.
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Table 3. Substrates Scope of γ-Chloroenalsa

entry Ar yield (%)b drc ee (%)d

1 4-F-Ph (4a) 68 10:1 >99
2 4-Cl-Ph (4b) 66 12:1 >99
3 4-Br-Ph (4c) 61 12:1 >99
4 4-Me-Ph (4d) 81 10:1 >99
5 4-MeO-Ph (4e) 62 9:1 >99
6 4-Ph-Ph (4f) 69 10:1 >99
7 3-Cl-Ph (4g) 63 12:1 >99
8 2-Cl-Ph (4h) 40 10:1 >99
9 naphthalen-2-yl (4i) 80 9:1 92
10 thiophen-3-yl (4j) 77 8:1 96

aUnless otherwise specified, reactions were performed on 1 (0.10
mmol), 2a (0.10 mmol). bYields of isolated products. cdr values
determined by 1H NMR. dee values determined via HPLC analysis.

Figure 1. X-ray crystal structure of 3a. Thermal ellipsoids are shown at
50% probability.

Scheme 3. Proposed Catalytic Pathway

Scheme 4. Transformation of Spiropyrazolone 3a
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