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alkenes†

Yilei Liao,‡a Xiandie Zhang,‡a Xiaoli Li,a Xiuying Liu,a Jiakai Chen,a Chao Shen,*b

Rui He,d Guofu Zhong *a,c and Jian Zhang *a,d

Remarkable progress has been made on chelation-assisted α and β C–H functionalization of aryl alkenes;

however, there is no report on C–H allylation reactions. This work focuses on the first α and β C–H allyla-

tion of aryl alkenes using allyl carbonates to produce linear and branched 1,4-dienes enabled by chela-

tion-assistance of pyridine-2-carboxamide, simply performed with Pd(OAc)2/AcOH in ethanol. This oper-

ationally simple protocol exhibited wide functionality tolerance and broad substrate scope and enabled

successful gram-scaled preparation.

Introduction

Chelation-assisted C–H functionalization represents a powerful
strategy toward structural complexity from simple raw feed-
stocks. Among them, olefinic C–H functionalization has
attracted remarkable attentions, which provide regio- and
stereo-selective synthesis of olefinic derivatives such as 1,3-
dienes, 1,4-dienes, and eneynes.1–3 These chelation-assisted
alkenyl C–H functionalizations proceed by endo- or exo-metal-
locycle intermediates, generally using 1,1-disubstituted
alkenes2 and disubstituted Z-alkenes3 as the substrates, with
the other possible reaction sites blocked (Scheme 1a). To the
best of our knowledge, although C–H functionalization of
Z-alkenes by exo-metallocycle has shown remarkable progress,3

chelation-assisted α C–H functionalization of E-alkenes
(including E-styrenes) bearing two competitive C–H bonds
through exo-cyclometallation remains unexplored.

Aryl alkenes are widely occurring and show extensive appli-
cations in material and pharmaceutical science.4 Significant

progress has been made on chelation-assisted olefinic C–H
functionalization of aryl alkenes.5–13 The well-defined one is
the β C–H functionalization of aryl alkenes by endo-metallo-
cycles, including C–H alkynylation, alkenylation, cyanation
and amino-carbonylation (Scheme 1a).6–13 However, α C–H
functionalization of aryl alkenes has attracted very limited
attention, and the reported methods not only restricted to C–H
alkenylation reactions but also employed only (Z)-configurated
aryl alkenes14 or plain styrenes (Scheme 1b).12a For example,
Engle14a and our group14b simultaneously reported on (asym-
metric) α C–H alkenylation of aryl alkenes, affording (axially
chiral) aryl dienes. In stark contrast, α C–H functionalization
of E-aryl alkenes is rarely reported due to the more difficult

Scheme 1 Chelation-assisted α and β C–H allylation of aryl alkenes.
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exo-cyclometallation and the existence of two competitive C–H
bonds.15 Moreover, although remarkable progress has been
made on olefinic C–H allylation of simple alkenes,16 there is
no report on α or β C–H allylation of aryl alkenes
(Scheme 1a–c).

Development of α C–H allylation of (E)- and (Z) configurated
styrenes is highly desirable not only for the synthetic diver-
sity to giving skipped diene products with complementary
E/Z selectivity but also for providing in-depth mechanistic
insight into C–H cyclometallation.1–3 With our ongoing
interest in olefinic C–H functionalization,2i–o,3e–f,14b,15 herein,
we report on the first chelation-assisted α and β C–H allyla-
tion of various styrenes, affording linear and branched
skipped dienes and even triene in excellent E/Z ratio selecti-
vity (Scheme 1d).

Results and discussion

Based on our previous reports,12a,15 we herein turned to
examine the C–H allylation of trans-styrene bearing a N,N
bidentate-chelation directing group (DG1–6). Although styrene
1 bearing Daugulis’s 8-aminoquinoline (DG1)17 led to no reac-
tion with allyl carbonate 2a (Table 1, entry 1), the substrate
bearing pyridine-2-carboxamide (DG2)18 afforded α C–H allyla-
tion product 3a in 77% yield, simply in the presence of
10 mol% Pd(OAc)2 and 2.0 equivalent AcOH in EtOH at 80 °C
(entry 2). Aryl alkene bearing pyrimidine-4-carboxamide (DG3)
led to comparable results (entry 3). Other nitrogen heterocycle
carboxamide such as pyrimidine-2-carboxamide (DG4), pyrazi-
namide (DG5) and isoquinoline-3-carboxamide (DG6) were also
examined, demonstrating that DG2 was the best one (entries
4–6). Using PivOH instead of AcOH led to a 63% yield (entry
7). The reaction without carboxylic acid only afforded a trace
product, exhibiting a carboxylate-assisted C–H activation event
(entry 8). The reaction was unsuccessful using H2O as a
solvent, however, H2O/MeOH still led to a 53% yield to demon-
strate its robustness (entries 9 and 10). Some other allylation
reagents (AR) were also examined in such C–H allylation reac-
tions. While allyl iodide 2b and allyl alcohol 2e afforded no
reaction, allyl carboxylates 2c and 2d gave moderate yields
(entries 11–14).

With the optimized conditions in hand, C–H allylation
between various trans-styrenes 1 and allyl carbonates 2 were
examined (Table 2). meta- and para-Substitutes such as F,
OMe, CF3, and Me were all well tolerated, affording aryl 1,4-
dienes in 49–77% yields (3a–3h). Styrene bearing longer ali-
phatic chains such as pentyl afforded 3i in 59% yield.
However, changing propyl to methyl and phenyl groups
decreased the product yield to 33% (3j) and 23% (3k), respect-
ively. Substrates bearing dimethoxy phenyl and naphthyl also
gave 3l and 3m in good yields. Secondary amine-derived amide
still converted well to give 3n in 66% yield. Unfortunately,
neither aniline nor phenylethylamine derivatives showed reac-
tivity, exhibiting the difficult formation of five- and seven-
membered palladacycle. Notably, branched allyl carbonate 2f

also reacted well to give rise to 3o in 70% yield with 65 : 35 E/Z
ratio selectivity. However, other allyl carbonates from 2-phenyl
prop-2-en-1-ol (2g) and cinnamyl alcohol (2h) exhibited no
reactivity.

After that, we turned to examine the β C–H allylation of aryl
alkenes 4 also bearing pyridine-2-carboxamide (DG2) (Table 3).
Under the optimal conditions, styrenes bearing F, CF3 and
OMe were converted smoothly to afford 1,4-dienes 5a–5d in
51–76% yields. Notably, branched allyl carbonate 2f reacted
well to give diene product 5e in 83% yield. Aryl alkenes 4
bearing phenyl or ethyl at the α position reacted successfully
to afford 5f and 5g in 74% and 65% yields, respectively, with
excellent E/Z ratio selectivity.

Next, we investigated the reaction of Z-configurated aryl
alkene 6 and plain styrene 8 under optimal conditions. While
Z-styrene gave rise to α C–H allylation product 7 in 66% yield
with 93 : 7 E/Z ratio selectivity (Scheme 2a), plain styrene 8
afforded triene product 9 in 51% yield with >99 : 1 E/Z ratio
selectivity (Scheme 2b).19

Table 1 Evaluation and optimization of the reactiona,b

Entry DG AR Additive Yieldb (%)

1 1 2a AcOH 0
2 2 2a AcOH 77
3 3 2a AcOH 73
4 4 2a AcOH 31
5 5 2a AcOH 65
6 6 2a AcOH 46
7 2 2a PivOH 63
8 2 2a — <5
9c 2 2a AcOH <5
10d 2 2a AcOH 53
11 2 2b AcOH 0
12 2 2c AcOH 52
13 2 2d AcOH 51
14 2 2e AcOH 0

a Reaction conditions: 1 (0.15 mmol, 1 equiv.), 2a (0.6 mmol, 4 equiv.),
Pd(OAc)2 (10 mol%), AcOH (2 equiv.), in EtOH (0.1 M) at 80 °C, for
24 h. b E/Z ratios of the isomer given in parentheses were determined
by 1H NMR analysis. cUsing H2O as a solvent. dUsing MeOH/H2O as a
solvent.
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To explore the mechanism of this C–H allylation of sty-
renes, controlled reactions were performed as described in
Scheme 3. If E-styrene 1a was subjected to the optimal con-
ditions with EtOD (0.1 M), 97% deuterium incorporation was
observed with 81% recovery, exhibiting the α C–H activation to
be facile and reversible (Scheme 3a). If the same reaction was
conducted in the presence of allyl carbonate 2a, 38% product
yield and 50% recovery of 1a without deuterium incorporation
were observed, which demonstrated a much faster olefin inser-
tion to outcompete the C–H activation step (Scheme 3b).
Allylation product 3a was obtained in 38% yield with 0% deu-
terium incorporation, exhibiting a direct 2a insertion followed
by liberation of CO2 and MeOH.3f,16 An intermolecular compe-
tition experiment between 6 and 1a was conducted to give the
product 7 in 40% yield and 3a in trace amount, exhibiting a
much higher reactivity of Z-styrene to outcompete E-styrene,
also exhibiting a more difficult formation of exo-metallocycle
with E-alkenes (Scheme 3c).15 Aliphatic E-alkene 10 was also
examined, and only a trace product was detected under
optimal conditions (Scheme 3d). Benzyl amide 11 led to no

aromatic C–H allylation, exhibiting the difficult formation of
five-membered palladacycle (Scheme 3e).20

Gram-scaled preparation of 3a was successful using 5 mol%
Pd(OAc)2 to demonstrate the robustness and practicality of this
method (Scheme 4a). The directing group was readily removed
by N-Boc protection followed by reduction with LiAlH4, provid-
ing NHBoc benzylamine 11 in 78% yield (Scheme 4b).
Terminal alkene of 1,4-diene 3a was selectively reduced to give
alkene 12 in 76% yield by using 10% Pd/C under hydrogen (1
atm) (Scheme 4c). Notably, two olefin moieties in 3o were com-
pletely reduced to afford branched alkane 13 in 45% yield
(Scheme 4d).

Based on previous reports16 and experiment results, a
plausible catalytic cycle is proposed in Scheme 5. Coordination
between the substrate and metal occurred to give a π-olefin
palladium complex I, which then formed a six-membered pal-

Table 2 Pd-catalysed α C–H allylation of E-styrenesa,b

a Reactions conditions: 1 (0.15 mmol, 1 equiv.), 2 (0.6 mmol, 4 equiv.),
Pd(OAc)2 (10 mol%), AcOH (2 equiv.), in EtOH (0.1 M) at 80 °C, for
24 h. b Isolated yields; E/Z ratios of the isomers given in parentheses
were determined by 1H NMR analysis.

Table 3 Pd-catalysed β C–H allylation of styrenesa,b

a Reactions conditions: 4 (0.15 mmol, 1 equiv.), 2 (0.6 mmol, 4 equiv.),
Pd(OAc)2 (10 mol%), AcOH (2 equiv.), in EtOH (0.1 M) at 80 °C, for
24 h. b Isolated yields; Z/E ratios of the isomers given in parentheses
were determined by 1H NMR analysis.

Scheme 2 α and β C–H allylation of Z- and plain styrenes.
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ladacycle II by a reversible α-C–H activation. Ligand exchange
by allyl carbonate coordination and alkene insertion took
place to afford an eight-membered palladacycle IV. Finally,
β-oxygen elimination occurred to produce aryl 1,4-diene 3.

Conclusions

In conclusion, we have developed N,N-bidentate-chelation
assisted α and β C–H allylation of E- and Z-configurated aryl
alkenes, as well as α-substituted styrenes and plain styrenes,
producing linear and branched 1,4-dienes and 1,4,7-triene
with excellent Z/E ratio selectivity. The operationally simple
protocol showed a broad substrate scope and enabled gram-
scaled preparation. This method is anticipated to exhibit wide
applications in multifarious organic synthesis.
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