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ABSTRACT: A range of Ru-, Rh-, or Pd-catalyzed vinylic C−
H/C−H cross-coupling reactions of olefins have been
demonstrated to provide 1,3-dienes, using a quantitative
amount of metal oxidants. Although transfer hydrogenation
and C−H alkenylation are two important areas that evolved
independently, we herein report the first iridium-catalyzed
cross-coupling reactions of alkenes by integration of directed
C(alkenyl)−H alkenylation and transfer hydrogenation to
obviate the usage of a metal oxidant, employing a hydrogen
acceptor such as inexpensive chloranil.

Cross-couplings such as Heck reaction are powerful
synthetic methods to construct carbon−carbon bonds

in materials and pharmaceutical chemisty.1 In particular,
combining two metal-catalyzed C(alkenyl)−H activations
into a single vinylic C−C bond-forming reaction represents
one of the most robust and versatile methodologies due to high
atomic and step economy, which can be divided into two
general categories.2−5 One is nondirected cross-coupling of
olefins via alkenyl-Pd intermediates, usually leading to E,E-
configurated 1,3-dienes.3 The other one is the Pd-, Ru-, or Rh-
catalyzed olefinic C−H alkenylation, which proceeded by
metallacycle intermediates formed from directed syn C-
(alkenyl)-H activation.4,5 However, a drawback of these
strategies is that an excess amount of silver or copper salt
was commonly used as an oxidant, leading to high cost,
undesired metal waste, and potential side reactions, thus the
synthetic utility might be significantly compromised. More-
over, it is still highly attractive to develop novel cross-coupling
reactions using other transition-metal catalysts due to their
potential to complement the substrate scope and reaction type.
To the best of our knowledge, general methods for the iridium-
catalyzed cross-coupling reactions between olefins still remain
elusive yet highly desirable (Scheme 1a).
Transfer hydrogenation6 and C−H alkenylation7 are two

important areas that evolved independently, and C(alkenyl)−
H/C(alkenyl)−H cross-coupling integration of these two areas
still remains challenging due to ready olefin isomerization,
hydrogenation of double bond, and so on, although hydrogen-
evolving aromatic C−H olefination has been disclosed
sporadically.8 Jeganmohan and co-workers reported an ortho
C−H olefination of aromatic amides using acrylates by
ruthenium catalysis, with the liberation of hydrogen gas.8b

However, there is still no report on cross-coupling reactions of
olefins by hydrogen transfer to provide conjugated dienes.9

Although great efforts have been made on iridium-catalyzed
C−H transformations of arenes and alkanes,10,11 reports on

olefinic C−H activation continue to be limited due to the
lability of olefins.12 Furthermore, there are several challenges
associated with the iridium-catalyzed cross-coupling of olefins
by hydrogen transfer, including (1) potential olefin isomer-
ization via π-allyliridium or hydridoiridium species,12,13 (2)
competitive vinylic and allyl C−H cleavage sites,12,14 and (3)
the possible hydrogen transfer to the olefin moiety.6,15

Although the organophosphorus and organosulfur compounds
served as crucial compounds in the area of pharmaceutical and
agricultural chemistry,16 their employment in catalyzed C−H
functionalization has been much less studied.17 Given our
continued interest in directed alkenyl C−H activation,5 we
report an iridium-catalyzed regio- and stereoselective cross-
coupling using structurally diverse acrylamides and vinyl-
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Scheme 1. Transition-Metal-Catalyzed Cross-Couplings of
Alkenes
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phosphonate as well as vinyl sulfone, leading to Z,E-conjugated
conjugated dienes (Scheme 1b).
Our objective in alkene−alkene coupling was to integrate

C−H activation and hydrogen transfer, thus obviating the
usage of an excess amount of a metal oxidant. So, a suitable
hydrogen acceptor and olefin substrates had to be identified to
be compatible with the C−H alkenylation step. At the
beginning of our study, a series of N-coordinating (including
acidic NHTs) acrylamides were tested as the substrate, but
failed under a variety of catalytic conditions. So, we turned to
examine relatively soft O-coordinating amide 1a, using diethyl
vinylphosphonate 2a as a coupling partner (Table 1).

Unfortunately, iridium complexes chelated by a cyclooctadiene
ligand were inefficient (entries 1−2). As Cp*/Ir(III)
complexes have been extensively utilized in C−H functional-
ization10 as well as hydrogen transfer and hydrogen borrowing
reactions,6 we turned to examine the catalytic reactivity of the
Cp*/Ir(III) complex. To our delight, [IrCp*Cl2]2 combined
with 50 mol % AgBF4 produced 3aa in 86% yield with excellent
Z,E-selectivity (Z,E/Z,Z > 99/1) (entry 3). A 2 equiv amount
of vinylphosphonate 2a was required because it also served as a
sacrificial hydrogen acceptor in the stoichiometric formation of
the diethyl ethylphosphonate.18 The silver additive is crucial
for the cross-coupling, and other silver salts such as AgSbF6,
AgOTf, and Ag2O led to less satisfactory results (entries 4−7).
Representative solvents such as MeOH, DCE, toluene, and
hexane were examined, but none of them could improve the
reaction (entries 8−11). Notably, MeCN totally blocked the
reaction due to the its strong coordination to the metal center
(entry 12). If 1.0 equiv of 2a was used, the product yield
decreased to 67% (entry 13). If the catalyst loading decreased
to 5 mol %, 3aa was still obtained in 69% yield (entry 14).
Next, we turned to investigate the substrate scope of Ir-

catalyzed alkene−alkene cross-coupling reactions (Scheme 2).
Phenyl rings bearing F, Cl, CF3, and OMe were all well
tolerated, delivering the 1,3-dienes in up to 85% yields with
excellent stereoselectivity (3ba−3fa). Installation of naphtha-

lene showed limited influence on the reaction, and the
corresponding diene 3ga was obtained in 70% yield without
any decrease in selectivity. Cyclic acrylamides embedded with
a cyclohexenyl or cyclopentene moiety led to good yields (3ha
and 3ia), as well as the reaction of acrylamide 1j bearing a long
alkyl group. Differently N-substituted acrylamides 1 were also
converted smoothly (3ka, 3la, and 3ma). The good reactivity
of the Weinreb amide highlighted the great synthetic usage for
further elaborations of the products, although with a slight
decrease in stereoselectivity (3na). Although a primary amide
led to trace product, a secondary amide still led to good results
(3oa). Moreover, phenyl vinyl sulfone also proved to be a good
coupling partner in the reactions with various acrylamides,
leading to 82−97% yields (3ab, 3bb, and 3jb). Finally, acrylate
also led to satisfactory results by using AgNTf2 salt instead
(3oc, 71% yield, Z,E/Z,Z > 99/1).
To our knowledge, benzoquinone and norbornene have

been demonstrated to be excellent hydrogen acceptors in Ir−H
chemistry. Herein, benzoquinone derivatives or norbornene
was investigated to understand the hydrogen transfer step, by
using 1 equiv of diethyl vinylphosphonate 2a (Scheme 3).
While employment of 1,4-benzoquinone and norbornene
retarded the reaction, addition of 2-bromo-1,4-benzoquinone
exhibited comparable results. Then, inexpensive chloranil
(tetrachloro-p-benzoquinone) (1.0 equiv) was examined as a
hydrogen acceptor, leading to 3ba in 61% yield. Interestingly,
the cross-coupling was further improved using an increased
amount of chloranil (89% yield, 1.8 equiv). The improved
catalytic conditions using inexpensive chloranil as a hydrogen
acceptor not only led to a much lower cost but also obviated
the production of an excess amount of undesired metal oxidant
waste; thus, the synthetic utility should be further promoted.
Examination of the substrate scope led to satisfactory results, as

Table 1. Optimization of Catalytic Conditionsa

entry catalyst additive solvent yield (%)b

1 [Ir(OMe)(cod)]2 AgBF4 EA 18
2 [IrCl(cod)]2 AgBF4 EA 17
3 [IrCp*Cl2]2 AgBF4 EA 86
4 [IrCp*Cl2]2 AgSbF6 EA 80
5 [IrCp*Cl2]2 AgOTf EA 62
6 [IrCp*Cl2]2 Ag2O EA 9
7 [IrCp*Cl2]2 − EA 0
8 [IrCp*Cl2]2 AgBF4 toluene 43
9 [IrCp*Cl2]2 AgBF4 DCE 51
10 [IrCp*Cl2]2 AgBF4 hexane 84
11 [IrCp*Cl2]2 AgBF4 MeOH 24
12 [IrCp*Cl2]2 AgBF4 MeCN 0
13c [IrCp*Cl2]2 AgBF4 EA 67
14d [IrCp*Cl2]2 AgBF4 EA 69

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [Ir] (20 mol
%), Ag salt (50 mol %), in a solvent (1 mL) at 100 °C for 6 h.
bIsolated yields. c1.0 equiv of 2a used. d5 mol % [IrCp*Cl2]2 used.
EA = ethyl acetate; DCE = 1,2-dichloroethane.

Scheme 2. Substrate Scope of Alkenesa

aReaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), [IrCp*Cl2]2 (10
mol %), AgBF4 (50 mol %), in ethyl acetate (1 mL) at 100 °C for 6 h.
bIsolated yields. cZ,E/Z,Z = 90/10. dAgNTf2 (2.0 equiv), at 120 °C
for 6 h.
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illustrated by the preparation of 3aa to 3bb to further
demonstrate the robustness of the improved protocol.
Given the high efficacy of the protocol, some mechanistic

experiments were conducted to delineate the mode of action.
An intermolecular competition experiment between substrates
1e and 1f showed that the electron-rich one to react
preferentially, thus exhibiting an electrophilic C−H bond
activation (Scheme 4a).5 The results were further illustrated by
a Hammett plot analysis, which indicated a linear fit with a
negative slope of ρ = −0.57 (Scheme 4b).
If acrylamide 1b was treated with 10 equiv of D2O under

optimal conditions in the absence of vinylphosphonate 2a,
significant cis vinylic H/D exchange was observed, thus
exhibiting a reversible cyclometalation mode (Scheme 5a).

The excellent site- and stereoselective deuterium incorporation
excluded the formation of alkyliridium via hydridoiridium
insertion.10,12e,19a If the same reaction was conducted with
alkene 2a, no deuterium would be incorporated to the
recovered 1b, supporting that the alkene insertion is much
faster than the reversibility of the C−H activation step.
Moreover, the deuterium incorporation to diene 3ba showed a
sufficiently fast H/D exchange on the hydridoiridium
intermediate to allow the H/D exchange of the vinyl moiety
in 2a by an insertion/β-elimination pathway (Scheme 5b).19b

Furthermore, there was no deuterium scrambling in the
crossover experiment using 1a and 1b-d2 (Scheme 5c). Finally,
vinylic C−H bond cleavage was confirmed to be the rate-
determining step by kinetic isotope effect (KIE) experiments
(Scheme 5d).20

The robustness of the protocol has been demonstrated by
scaling up the reaction up to gram scale using a decreased
catalyst loading (Scheme 6a). Conjugated diene was
successfully reduced to adipic acid derivative 4ac under
catalytic hydrogenation (Scheme 6b). The Weinreb dienamide
3na could be smoothly reduced to hemiaminal 4na by simply

Scheme 3. Screening of Hydrogen Acceptor and Substrate
Scopea

aReaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), [IrCp*Cl2]2 (10
mol %), AgBF4 (50 mol %), hydrogen acceptor (1.0 equiv), in ethyl
acetate (1 mL) at 100 °C for 6 h; the yields are isolated yields.
bChloranil (1.8 equiv) used as hydrogen acceptor.

Scheme 4. Intermolecular Competition Experiments and
Hammett Plot Analysis

Scheme 5. Deuterium-Labeled Experiments

Scheme 6. Synthetic Applications
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using DIBAL-H, with the phosphonate group intact (Scheme
6c).
Plausible mechanisms are illustrated in Scheme 7. First, a

cationic species I is generated by the aid of silver salt, and the

reversible C−H bond cleavage affords II, followed by alkene
coordination and insertion, leading to a seven-membered
iridacycle III. Next, β-H elimination occurred to provide diene
3 and [Ir]−H complex IV, and the latter reduced the electron-
deficient alkene 2 by insertion to afford alkyliridium species V
and VI. Although the formation of V and VI is reversible, the
following protonolysis provided an alkane and regenerated the
catalytic species I.
In conclusion, for the first time, an iridium-catalyzed cross-

coupling between electron-deficient olefins has been demon-
strated, leading to site- and stereoselective preparation of
(Z,E)-configurated dienamides. By judicious choice of complex
[IrCp*Cl2]2 as the catalyst, the reaction led to a much lower
cost by using inexpensive chloranil as the hydrogen acceptor.
The operationally simple protocol exhibited a broad substrate
scope of various di- and trisubstituted cyclic/acyclic
acrylamides. Additionally, we have also examined the possible
mechanism to gain insights into the directed olefinic C−H
alkenylation by hydrogen transfer. Efforts to further under-
stand the mechanism and apply the hydrogen transfer to the
novel C−H transformation are currently underway in our lab.
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