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ABSTRACT: The first cobalt-catalyzed cross-couplings be-
tween olefins has been demonstrated to provide C(alkenyl)—
H alkenylation and alkylation products, using complex
[Cp*Co(CO)L,]. While coupling partner acrylates afforded
conjugated dienoates, @,f-unsaturated ketones led to y-alkenyl
ketones completely, representing a switchable C—H function-
alization controlled by different carbonyl groups.

D irect C—H alkenylation such as Heck reaction is a
powerful synthetic method to form new carbon—carbon
bonds; thus, it is highly desirable in pharmaceutical and
materials chemistry." In particular, the oxidative olefinic C—H
alkenylation reactions provided an attractive access toward the
preparation of conjugated dienes with atomic economy.””*
Two strategies can be used to realize these cross-coupling of
alkenes. One is originated by alkenyl-Pd intermediates to form
(E,E)-conjugated dienes,” and the other is the functionality-
directed olefinic C—H alkenylation to produce (Z,E)-
butadienes via a cyclometalation event (see Scheme la).
However, one limitation is that only noble metals, such as Rh,
Ru, and Pd, have been utilized in olefinic C—H alkenylation,
and there is still no example by the usage of inexpensive first-
row transition-metal catalyst, such as rather environmentally
benign cobalt complexes.’

Scheme 1. Catalytic C(alkenyl)—H Alkenylation/Alkylation
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Recently, the addition of a C—H bond across an inert alkene
has become an important method to realize direct C—H
alkylation, because of attractive features such as byproduct-free
properties and greater availability of alkenes than alkyl halides.
Although remarkable progress have been made on aromatic
C—H alkylation using alkyl halides or alkenes,’ olefinic C—H
alkylation has still remained undeveloped,” especially alkenyl
C—H alkylation using alkenes.”® Toste and Bergman
previously reported an intramolecular cross-coupling of alkenes
mediated by the [CpCo(NO),] complex.** However, there is
still no intermolecular cross-coupling of alkenes via cobalt
catalysis (see Scheme 1a).

Despite the vast majority of catalyzed C(sp>)—H function-
alizations achieved by precious second- and third-row
transition metals, the focus has shifted to the use of
inexpensive and Earth-abundant first-row transition metals,
such as rather environmentally benign cobalt.>”'" Remarkable
progress has been made in cobalt-catalyzed C—H activation,
and it is urgent to extend the olefinic C—H alkenylation/
alkylation to cobalt catalysis for the complementary substrate
scope and reaction type, as well as new opportunities to
develop ligand-controlled and site-selective/stereoselective C—
H transformations.”™ "' Unfortunately, examples on cobalt-
catalyzed olefinic C—H activation remain scarce, most of which
were restricted to C—H activation/annulations to provide
heterocycles.' Although our group has made progress in
transition-metal-catalyzed olefinic C—H activation using Rh, Ir,
or Ru complexes,’®” we are still curious about the reactivity
and selectivity of their lighter congeners such as inexpensive
cobalt. Herein, we disclose the first Co-catalyzed regioselective
and stereoselective cross-coupling of alkenes, leading to
dienoates and y-alkenyl ketones. The carbonyl group, ester
or ketone, plays a key role in the switchable C(alkenyl)—H
alkenylation and alkylation (see Scheme 1b).
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The amide group has been widely utilized in pharmaceutical
chemistry, as well as directed C—H activation, and we tested
the cross-coupling between acrylamide la and acrylate 2a,
using robust Cp*Co(IIl) cobalt complex as a catalyst.”'
Although [Cp*Co(CO)I,] combined with AgOAc led to no
product, the addition of AgSbF4 (40 mol %) greatly promoted
the reaction, producing 1,3-diene 3aa in 51% yield (see Table
1, entries 1 and 2). Representative silver salts, such as AgOTT,

Table 1. Condition Optimization”

vo e ool NN
G%HAP*‘ + /YOBU oxidant (2.5 equiv; . _H
. 22 solvent (0.2 M), 60 °C | oau
3aa

entry additive oxidant solvent yield b (%)
1 - AgOAc DCE 0
2 AgSbF AgOAc DCE 51
3 AgOTf AgOAc DCE 21
4 AgNTf, AgOAc DCE 49
S AgBF, AgOAc DCE 31
6°  AgSbFs/AcOH AgOAc DCE 60
7¢ AgSbF,/PivOH AgOAc DCE 39
8°  AgSbFy/HCOOH  AgOAc DCE 43
9°  AgSbFs/AcOH Ag,CO, DCE 15
10°  AgSbFy/AcOH Cu(OAc),  DCE 44
11° AgSbF¢/AcOH AgOAc MeOH 0
12°€ AgSbF,/AcOH AgOAc MeCN 0
13°  AgSbF,/AcOH AgOAc DCM 40
14°  AgSbE/AcOH AgOAc CHCI, 58
15° AgSbF¢/AcOH AgOAc DME 49
1654 AgSbFs/AcOH AgOAc DCE 0

“Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [Cp*Co(CO)-
L] (10 mol %), additive (40 mol %), oxidant (2.5 equiv), in a solvent
(1 mL) at 60 °C, 16 h. “Isolated yields. “Carboxylic acid (40 mol %)
and AgSbF; (40 mol %) were used. 9Co(OAc), (10 mol %) was used
instead of [Cp*Co(CO)L,]. [Legend: DME = 1,2-dimethoxyethane,
DCE = 1,2-dichloroethane, and DCM = dichloromethane.]

AgNTTf,, and AgBF,, have been screened, but none of them
improved the reaction (see Table 1, entries 3—5). Interestingly,
the addition of acetic acid further improved the C—H
alkenylation, leading to 3aa in 60% yield with complete
(Z,E)-configuration (Z,E/Z,Z > 99/1), supporting a chelation-
assisted vinylic C—H activation via cyclometalation.”'* (see
Table 1, entry 6). However, other carboxylic acids, such as
PivOH and HCOOH, exhibited decreased efficacy (see Table
1, entries 7 and 8). Different metal oxidants such as Ag,CO; or
Cu(OAc), were examined, but neither of them provided
satisfactory results (see Table 1, entries 9 and 10). Moreover,
replacing the DCE with other solvents, such as methanol
(MeOH), acetonitrile (MeCN), dichloromethane (DCM),
CHCl,, or 1,2-dimethoxyethane (DME) failed to further
improve the coupling reaction (see Table 1, entries 11—15).
Finally, simple cobalt complexes such as Co(OAc), did not
catalyze the cross-coupling (see Table 1, entry 16).

Next, we turned to examining the scope of substrates
acrylamides 1 and alkenes 2. As shown in Scheme 2, a wide
variety of acrylates 2 reacted well with N-benzyl methacryla-
mide la to provide conjugated diene derivatives successfully,
and phenyl acrylate reacted best (3aa—3af). Notably,

Scheme 2. Scope of Alkenyl C—H Alkenylation“'b
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“Reaction conditions 1 (0.2 mmol), 2 (0.4 mmol), [Cp*Co(CO)L,]
(10 mol %), AgSbF (40 mol %), AcOH (40 mol %), AgOAc (2.5
equiv), in DCE (1 mL) at 60 °C, 16 h. bIsolated yields.

tetrahydrofurfuryl alcohol derivated acrylate also converted
well and led to moderate yield (3ag). Unfortunately, phenyl
vinyl sulfone only exhibited limited reactivity (3ah). Differ-
ently N-substituted acrylamides were further investigated.
While secondary amides bearing methyl or isopropyl produced
1,3-diene in good yields, tertiary amide such as pyrrolidine
amide 1d led to moderate yield. Installation of a phenyl ring
and long aliphatic chain to the a-position of acrylamides also
reacted, and the corresponding dienes 3ed and 3fd were
isolated in 43% and 64% yields, respectively. Some other
unsuccessful substrates included acrylamides bearing N—OH,
N-OMe, and N-T's substituents.

Electron-deficient alkene such as vinyl ketones 4 were also
examined as coupling partners. Interestingly, vinyl ethyl ketone
4a reacted well with acrylamide la to provide alkylation
product Saa in 65% vyield under the optimal conditions
(Condition A), without the formation of 1,3-diene 3aa (eq 1):

o
Me
Me N~ph [Cp"Co(CO)zl (10 mol %) M© N ‘ N"Ph
| H AgSbFg (40 mol %) | H H
1a ACOH (40 mol %) . | eq.1
+ AgOAc (x equiv) Me Me
AN e DCE, 60 °C,16 h o o
o 5aa 5aa’

2a

AgOAc, 0 equiv, 5aa, 75%; 5aa’, 0%
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The C—H alkylation is redox-neutral and it is supposed to
proceed via a proto-demetalation step-involved mechamsm
Therefore, the optimization was performed without AgOAc,”’
leading to y-alkenyl ketone Saa in 75% yield (Condition B).
Consequently, various acrylamides were employed to react
with unsaturated ketones to construct y-alkenyl ketones
(Scheme 3). Aromatic acrylamides bearing F, Cl, Br, or

Scheme 3. Scope of Alkenyl C—H Alkenylation®"”
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“Reaction conditions: 1 (0.2 mmol), 4 (0.4 mmol), [Cp*Co(CO)L]
(10 mol %), AngFé (40 mol %), AcOH (40 mol %), in DCE (1 mL)
at 60 °C, 16 h. “Isolated yields. ©2.0 mmol scale (1a, 0.35 g).

OMe were all well-converted, regardless their electron-
donating or electron-withdrawing properties (Sea—5ka,
64%—82% vyields). Tertiary amide 1l and acrylamide 1m
bearing a larger aromatic naphthalene were proven to be good
substrates to react with ketones, including 1-octen-3-one 4b
(5lb, Sma, and Smb). Notably, gram-scale preparation of Saa
was also successful, leading to a yield of 78%.

Treatment of acrylamides le or 11 under Condition A or
Condition B, in the presence of CD;COOD (10 equiv), led to
significant vinylic deuterium incorporation in both cases,
exhibiting reversible cyclometalation events (see Schemes 4a
and 4b). The reaction between deuterium-labeling acrylamide
le-d, and acrylate 2a under Condition A provided only 3ed-d
in 23% vyield, exhibiting a complete cis-C(alkenyl)-D cleavage
and alkenylation. The olefinic H/D exchange in recovered
substrate 1l-d, supported the hypothesis that the olefin
insertion was competitive with the reversibility of the C—H
activation step (see Scheme 4c). Deuterium-labeling acryl-
amide le-d, was also reacted with ketone 4a under conditions
B, but no olefinic H/D exchange to recovered substrate 11-d,
was observed, exhibiting that the alkylation step is much faster
to outcompete the reversibility of the C—H cleavage step (see
Scheme 4d). If CD;COOD is used instead, H/D exchange in
the a-position of ketone in product Sla was observed,
supporting a keto/enol like isomerization involved mechanism

7774

Scheme 4. Deuterium-Labeled Experiments
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(see Scheme 4e). Parallel and competitive kinetic isotope effect
(KIE) experiments confirmed the directed alkenyl C—H
activation to be the rate-determining step (see Scheme 4f)."

Intermolecular competition experiments between acryla-
mides 1j and 1i under Conditions A and B were performed to
gain some preliminary understanding of the reaction
mechanisms. Both experiments showed that the electron-rich
alkene reacts preferentially, thereby exhibiting an electrophilic
C—H activation (see Scheme 5)."'*

Plausible catalytic mechanism is presented in Scheme 6.
First, AgSbFs-abstracted halide from the [CoCp*(CO)L]
complex in the presence of acetate, leading to a monocationic
and catalytically active species [Cp*Co(III)(OAc)]* (I). Next,
Co(IIN)-O chelation-assisted”'” vinyliv C—H bond cleavage

Scheme 5. Competition Experiments

MeO.

cl (a)

(b)

il H 3ja,16% O 3ia,6% O
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Scheme 6. Proposed Mechanisms
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occurred to form metalacycle II via acetate assisted concerted
metalation-deprotonation (CMD)."> Olefin insertion, /-
hydride elimination, and the following reductive elimination
would produce conjugated diene 3 and acetic acid, with the
liberation of Co(I)Cp* (IV), which was oxidized by AgOAc to
regenerate the active species I (path a). In the reaction of
ketones, the 7-membered cobaltocyclic intermediate III binded
an AcOH, underwent a keto/enol-like isomerization and a
following “de-chelation isomerization”, would generate an
intermediate VI. Protonation of VI by acetic acid produced §
and regenerated the [Cp*Co(III)(OAc)]" species I (path b).
Herein, the metallo- keto/enol isomerization was considered
to be the key step in the C—H alkylation process. However, the
use of acrylate significantly destabilized this isomerization, thus
driving the reaction toward the C—H alkenylation.””"*

In summary, the first Co-catalyzed cross-couplings between
electron-deficient olefins have been developed using cobalt
complexes [Cp*Co(CO)L,], leading to regioselective and
stereoselective construction of a wide variety of Z,E-
dienamides, as well as y-alkenyl ketones, by judiciously
choosing of coupling partners. While acrylates led to
conjugated dienes via f-hydride elimination, a,f-unsaturated
ketones produced C—H alkylation products by proto-
demetalation. Further explorations on the cobalt-catalyzed
C—H functionalizations are underway in our laboratory.
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